

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Comments Concerning the Study of KBr-Contaminated Carbons Using Infrared FT Diffuse Reflectance Spectroscopy

M. J. D. Low^a

^a Department of Chemistry, New York University, New York, N. Y.

To cite this Article Low, M. J. D.(1986) 'Comments Concerning the Study of KBr-Contaminated Carbons Using Infrared FT Diffuse Reflectance Spectroscopy', *Spectroscopy Letters*, 19: 3, 259 — 264

To link to this Article: DOI: 10.1080/00387018608069236

URL: <http://dx.doi.org/10.1080/00387018608069236>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMMENTS CONCERNING THE STUDY OF KBr-CONTAMINATED CARBONS
USING INFRARED FT DIFFUSE REFLECTANCE SPECTROSCOPY

Key Words: carbons, infrared spectra, diffuse reflection
spectroscopy, contamination

M.J.D.Low

Department of Chemistry
New York University
New York, N.Y. 10003

Rochester and associates [1] recently stated: (A)
"We here show that the combination of F.t i.r., diffuse
reflectance, and a vacuum cell with a heatable stage
provides an extremely powerful method for the spectro-
scopic examination of carbon surfaces in situ under a
variety of experimental conditions." They showed quite
well-structured spectra stated to be those of carbons
after treatment with oxygen at temperatures up to 540°C.

However, they also stated: (B) "A homogeneous mixture of ca. 6 wt. activated carbon ... and KBr was evenly spread on the sample stage of a vacuum chamber..." and stated that (C) "Spectra were recorded with reference to background spectra of either KBr alone in the i.r. cell or the initial KBr-carbon mixture in the cell before oxygen treatment." [The bold characters and underlining have been added to the verbatim quotations.] They leave no doubt that they recorded spectra of carbon-KBr mixtures.

The purpose of the present comment is not to quibble about the fact that a mere 94 wt. % of KBr has been overlooked, so that statement A is misleading, but to point out, perhaps redundantly, that it is well-known that alkali metal salts enhance the gasification rates and mechanisms of carbonaceous materials [2], potassium salts being of particular value [3]. Although the halides are not very efficient gasification promoters (carbonates are best), their presence does affect gasification rates, e.g., [4].

It is also a fact that a detailed IR spectroscopic study showed that the presence of NaCl markedly altered the pyrolysis of cellulose and the oxidative behavior of the carbons which were formed [5], and that another detailed IR study [6] showed that the presence of potassium (derived from KHCO_3) also markedly affected the pyrolysis of cellulose and the oxidative behavior of the carbons which were formed. Further, the two salts produced different effects.

In addition, it is well-known that NaCl and KBr crystals cannot (or, at least, should not) be used as windows for IR cells at temperatures above about 350°C ; the windows sublime. In fact, Most alkali halides have appreciable vapor pressures [7]. For KBr, the vapor pressure rises rapidly from 2×10^{-6} torr at 445°C to 1.3×10^{-3} torr at 540°C to 2.5×10^{-2} torr at 627°C [8]. Indeed, vaporization techniques are used for the preparation of salt films having surface areas high enough to be used for IR studies of adsorbed species, e.g., [9-12].

What all this means in view of statements B and C is that the samples Rochester and associates examined consisted of small amounts of carbon contaminated with KBr, and that heating the samples in order to carry out oxidation studies aggravated the situation because the vaporized KBr would have contaminated every previously uncontaminated nook and cranny of the carbon.

The KBr contaminant will affect the reaction(s) of the carbon. Consequently, although IR spectra can be or may be recorded with such samples by the means employed by Rochester and associates, there is no point in doing so, except perhaps with the intention of establishing the effects of the contaminant on the reactivity of the carbon. Of course, to accomplish the latter it will also be necessary to study the reactions of uncontaminated carbon by means of the exact same technique. Whether that can be done remains to be established.

As things stand at present, the technique described by Rochester and associates will, inexorably, lead to wrong results, and should be avoided.

ACKNOWLEDGEMENT

Support by EPA grant R-810099-01 and NSF grant CHE-8111778 is gratefully acknowledged.

REFERENCES

1. B. J. Meldrum, J. C. Orr and C. H. Rochester, *J. Chem. Soc., Chem. Commun.* 1985, 1176.
2. D. W. McKee, in The Chemistry and Physics of Carbon, P. L. Walker and P. A. Thrower, eds., 17, 1 (1980).
3. D. W. McKee and D. Chatterji, *Carbon* 16, 53 (1978).
4. K. J. Hüttinger and R. Minges, *Fuel* 63, 9 (1984).
5. M. J. D. Low and C. Morterra, *Carbon* 23, 311 (1985).
6. C. Morterra and M. J. D. Low, *Carbon* 23, 335 (1985).
7. S. Dushman, Scientific Foundations of Vacuum Technique, 2nd edition, J. M. Lafferty, e., Wiley, New York, 1962, p 723-725.
8. B. Zimm and J. E. Mayer, *J. Chem. Phys.* 12, 362 (1962).
9. R. Guerin and M. Leard, *J. Phys. C:Solid State Phys.* 12, 4657 (1979).
10. A. Lunezky, Y. Kozirovski and M. Folman, *J. Colloid Interface Sci.* 92, 525 (1983).

11. Y. Kozirovski and M. Folman, Trans. Faraday Soc. 62, 808 (1966).
12. O. Markovitch, Y. Lubezky and A. Kozirovski, J. Phys. Chem. 80, 2530 (1976).

Received: 10/11/85

Accepted: 11/4/85